Production of recombinant beta-hexosaminidase A, a potential enzyme for replacement therapy for Tay-Sachs and Sandhoff diseases, in the methylotrophic yeast Ogataea minuta.
نویسندگان
چکیده
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.
منابع مشابه
Production of Recombinant -Hexosaminidase A, a Potential Enzyme for Replacement Therapy for Tay-Sachs and Sandhoff Diseases, in the Methylotrophic Yeast Ogataea minuta
Production of Recombinant -Hexosaminidase A, a Potential Enzyme for Replacement Therapy for Tay-Sachs and Sandhoff Diseases, in the Methylotrophic Yeast Ogataea minuta Hiromi Akeboshi, Yasunori Chiba,* Yoshiko Kasahara, Minako Takashiba, Yuki Takaoka, Mai Ohsawa, Youichi Tajima, Ikuo Kawashima, Daisuke Tsuji, Kohji Itoh, Hitoshi Sakuraba, and Yoshifumi Jigami* Research Center for Glycoscience, ...
متن کاملEffective gene therapy in an authentic model of Tay-Sachs-related diseases.
Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means...
متن کاملTherapeutic Potential of Intracerebroventricular Replacement of Modified Human β-Hexosaminidase B for GM2 Gangliosidosis
To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB ...
متن کاملPharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients.
Tay-Sachs and Sandhoff diseases are lysosomal storage disorders that result from an inherited deficiency of beta-hexosaminidase A (alphabeta). Whereas the acute forms are associated with a total absence of hexosaminidase A and early death, the chronic adult forms exist with activity and protein levels of approximately 5%, and unaffected individuals have been found with only 10% of normal levels...
متن کاملApoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases.
Tay-Sachs and Sandhoff diseases are autosomal recessive neurodegenerative diseases resulting from the inability to catabolize GM2 ganglioside by beta-hexosaminidase A (Hex A) due to mutations of the alpha subunit (Tay-Sachs disease) or beta subunit (Sandhoff disease) of Hex A. Hex B (beta beta homodimer) is also defective in Sandhoff disease. We previously developed mouse models of both disease...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 15 شماره
صفحات -
تاریخ انتشار 2007